Content Clarification for Modeling the Universe: Earth and Space Science-Models, Evidence, and Explanation

Vision of Lasting Knowledge and	Grade Level Learning Goals and	Ideas about Student Learning from	MTU investigations/activities/resources
Skills: Related Content Knowledge	Inquiry Abilities (combined	formal and informal research (compiled	_
and Adult Science Literacy statements	Benchmarkes for Science Literacy and	from NSES essays, Benchmarks Ch 15,	Fill in connections to YOUR
from SFAA, NSES, Benchmarks	National Science Education Standards)	AER, informal education evaluations)	curriculum topics/ related content
A model of something is a simplified	Grades 6-8	Students in middle school and high	What are your ideas about models?
imitation of it that we hope can help us	Models are often used to think about	school view models as physical copies	Pre- and Post- Assessment Survey
understand it better. A model may be	processes that happen too slowly, too	of reality and not as conceptual	
a device, a plan, a drawing, an	quickly, or on too small a scale to	representations. (NSES, p. 116)	Modeling the Universe activity and
equation, a computer program, or even	observe directly, or that are too vast to		Journal Reflections
just a mental image. Whether models	be changed deliberately, or that are	Research in developmental psychology	
are physical, mathematical, or	potentially dangerous.	implies that high school students may	How big is the universe? scaling
conceptual, their value lies in	Different models can be used to	understand that the best model isn't	demo
suggesting how things either do work	represent the same thing. What kind of a	found yet, or that different people prefer	
or might workWhen a model does	model to use and how complex it should	different models while waiting for more	How old is the universe? Timeline
not mimic the phenomenon well, the	be depends on its purpose. The	evidence, but NOT that there may be no	inquiry
nature of the discrepancy is a clue to	usefulness of a model may be limited if	"true" model at all. (Benchmarks)	
how the model can be improved.	it is too simple or if it is needlessly		What's in the Universe? Tour
Models may also mislead, however,	complicated. Choosing a useful model is	Research suggests effective learning	
suggesting characteristics that are not	one of the instances in which intuition	environments should promote	Modeling the Universe presentation
really shared with what is being	and creativity come into play in science,	integration of science content, scientific	on development of scientific models of
modeled. Fire was long taken as a	mathematics, and engineering.	inquiry skills, and "epistemic	the universe
model of energy transformation in the		knowledge" (how we know). Further,	
sun, for example, but nothing in the	Grades 9-12	an important part of epistemic	
sun turned out to be burning. SFAA p.	The usefulness of a model can be	understanding also includes students'	
124	tested by comparing its predictions to	epistemologies of the nature and purpose	
	actual observations in the real world. But	of scientific models because the degree	
	a close match does not necessarily mean	to which models can serve as	
	that the model is the only "true" model	representations of scientific phenomena	
	or the only one that would work.	depends on students' epistemological	
	Evidence consists of observations	commitment to a model as an	
	and data on which to base scientific	explanatory framework of the scientific	
	explanations. Using evidence to	phenomena under inquiry. (Gobert et al,	
	understand interactions allows	AEKA, 2002 – Concord Consortium)	
	individuals to predict changes in natural		
	and designed systems	Unless sudents are encouraged to attend	
		models, common missoneontions can be	
		reinforced unwittingly (a.g. taytheel	
		diagrams of astronomical phenomena	
		are NOT to coole	
	1	are NOT to scale)	

Student inquiries should culminate in formulating an explanation or model. Models should be physical, conceptual, and mathematical. In the process of answering the questions, the students should engage in discussions and arguments that result in the revision of their explanations. These discussions should be based on scientific knowledge, the use of logic, and evidence from their investigation.

This aspect of the standard emphasizes the critical abilities of analyzing an argument by reviewing current scientific understanding, weighing the evidence, and examining the logic so as to decide which explanations and models are best. In other words, although there may be several plausible explanations, they do not all have equal weight. Students should be able to use scientific criteria to find the preferred explanations.

NSES Unifying Concept: Models, evidence and explanation

Models are tentative schemes or structures that correspond to real objects, events, or classes of events, and that have explanatory power. Models help scientists and engineers understand how things work. Models take many forms, including physical objects, plans, mental constructs, mathematical equations, and computer simulations.

Inquiry Abilities 9-12 NSES

Formulate and revise scientific explanations and models using logic and evidence

Recognize and analyze alternative explanations and models

Learning Goals regarding Scale: By Grade 8:

Properties of systems that depend on volume, such as capacity and weight, change out of proportion to properties that depend on area, such as strength or surface processes.

As the complexity of any system increases, gaining an understanding of it depends increasingly on summaries, such as averages and ranges, and on descriptions of typical examples of that system. By Grade 12

Representing large numbers in terms of powers of ten makes it easier to think about them and to compare things that are greatly different.

Regarding Scale: (Benchmarks)

The range of numbers that people can grasp increases with age. No benefit comes from trying to foist exponential notation on children who can't grasp its meaning at all. It has been argued that people really can't comprehend a range of more than about 1,000 to 1 at any one moment. One can think of a meter being a thousand millimeters (they are there to be seen in a quick look at a meter stick) and that a kilometer is a thousand meters (it can be run off in a few minutes) - but one may not be able to think of a kilometer as a million millimeters. A million becomes meaningful, however, as a thousand thousands, once a thousand becomes comprehensible. Particularly important senses of scale to develop for science literacy are the immense size of the cosmos, the minute size of molecules, and the enormous age of the earth (and the life on it).

http://www.universeforum.org/mtu/